Pitágoras em um problema vitruviano

É dado um quadrado ABCD de lado a. Determine o raio da circunferência que contém os vértices A e B e é tangente ao lado CD.

Este é o enunciado de um problema presente no livro Teorema de Pitágoras e
Áreas, de autoria de Eduardo Wagner.

vitruvio
Desenho resultante da questão constante no livro de Eduardo Wagner.

Assim que eu vi o desenho, lembrei-me do Homem vitruviano, cuja versão de Leonardo da Vinci é bastante conhecida. Outros artistas  fizeram suas representações, mas a essência é a mesma: integrar a figura humana dentro de um círculo e um quadrado.

vitruvios2
O Homem vitruviano. À esquerda, desenho de Leonardo da Vinci. À direita, versão de Giacomo Andrea

É claro q, olhando com bastante critério, existe uma diferença no q diz respeito aos pontos do lado superior do quadrado em relação ao círculo, mas vamos considerar esse desvio como irrelevante.

O problema pede achar o raio da circunferência dada, isto é o segmento OB. Voltemos agora ao desenho de Giacomo. Fácil perceber q este segmento seria um com extremidades no umbigo da figura humana desenhada e na ponta do dedo da mão, correto?

Aqui vale uma pausa. Um  cânone é um modelo, um padrão (existem outros significados, mas este é o q nos interessa). E um dos mais conhecidos é o do escultor grego Lísipo, q dividiu a figura humana em 8 partes, usando a cabeça como unidade de medida, isto é, como cânone.

De forma “arredondada” (encontrei algumas aproximações) a linha do umbigo estaria a 3 cabeças do topo da figura (ou a 5 cabeças da base), ou seja, usando a linha do pé como referência, o umbigo estaria a 5/8 da altura da figura humana. Voltemos ao desenho de Giacomo e vamos notar q esta também é a medida entre o umbigo e a ponta do dedo da mão.

canone
Exemplo do cânone de 8 cabeças. O umbigo passaria aproximadamente a 3 cabeças do topo ou a 5 cabeças da base da figura humana.

Agora vamos retomar o desenho do quadrado e da circunferência. Achar a o raio da circunferência (ou o segmento OB), é o mesmo q achar a hipotenusa do triângulo retângulo representado conforme a figura abaixo.

vitruvio2
O raio (R) da circunferência é a hipotenusa (OB) do triângulo retângulo OMB.

Para tanto, vamos usar o teorema de Pitágoras, isto é, o quadrado da hipotenusa (OB ou R) é igual à soma do quadrado dos dois catetos: (MB = a/2) e (OM = a – R)

R^2 = (a/2)^2 + (a – R)^2

O resultado de R em função de lado do quadrado  é igual a 5a/8, ou seja, cinco oitavos do lado do quadrado, a mesma distância q encontramos no cânone das 8 cabeças!

Outra coisa interessante é que se dividimos 8/5 vamos encontrar 1,6, q é uma aproximação do número de ouro (1,618…). Esta informação é importante pq o número de ouro é encontrado facilmente em várias proporções do corpo humano. A localização do umbigo em relação à altura do corpo é um bom exemplo disso.

E pra descontrair, uma forma bem-humorada de nos referirmos ao “raio da circunferência”.

O raio da circunferência

Anúncios
Pitágoras em um problema vitruviano

“Estudar é preciso”

Nesta semana estudei um pouco do teorema de Pitágoras. Antes eu estudava para passar na prova, passar de ano, passar em concurso. Estudar era quase sempre um meio, não um fim em si mesmo. Ainda estudo com objetivos práticos e até outubro o meu foco é “passar”. Mas hj não posso dizer q estudo SÓ para isso. Desde q comecei a fazer cartuns a partir de temas relacionados à Matemática e outras disciplinas, fiquei mais atento aos assuntos, sempre buscando uma “brecha”, um elemento capaz de virar um desenho. Algum humor, sim, mas sem deturpar o conteúdo, senão vira um desserviço.

Sobre o célebre teorema do matemático de Samos, passei pelos ternos pitagóricos, q são conjuntos de 3 números inteiros q satisfazem à regra: o quadrado do maior número é igual à soma do quadrado dos outros dois. Se prestarmos atenção, nada mais é do q acontece em um triângulo retângulo, cujo quadrado da hipotenusa é a soma dos quadrados dos catetos. Além disso, se os 3 números forem primos entre si, isto é, possuírem apenas o número 1 como divisor comum, temos um trio pitagórico primitivo.

Bom, o resultado dos estudos segue abaixo:

Ternos pitagóricos Terno pitagórico primitivo

Quase todos esses desenhos eu publico no meu perfil no Instagram. Mas como eu gosto de escrever, e acho esse exercício fundamental para meu trabalho, o blog continua sendo o melhor lugar. Talvez soe obsoleto demais, mas desde q a ferramenta de blog surgiu, eu nunca deixei de usar esse recurso.

“Estudar é preciso”

Números nada redondos

Certamente vc, amigo leitor, amiga leitora, já deve ter ouvido falar em raiz quadrada. Não pretendo me alongar em definições (até pq não as sei de cor), mas vou direto ao ponto: vc tb já ouviu falar na raiz quadrada de 2, certo?

O número q, elevado ao quadrado, resulta o número 2 pertence a um grupo muito específico de números: os irracionais. Dentre eles um dos mais conhecido é o pi. Um número irracional é aquele q não pode ser representado na forma a/b, sendo a e b números inteiros. Por exemplo, o número 4 é racional, pois pode ser representado por 4/1 (4 e 1 são inteiros). Dízimas também são números racionais, apesar de infinitas. Por exemplo, 0,333… pode ser representado por 1/3 (1 e 3 são números inteiros).

Agora pago uma cerveja se vc me apresentar dois números inteiros q, se apresentados sob a forma a/b resultem a raiz quadrada de 2. E para q vc não perca seu tempo e tente ganhar a cerveja de qq jeito, sugiro procurar um cara chamado Euclides. Ele tem um argumento bastante convincente sobre o q estou falando. Tão convincente q se chama prova matemática (e olha q esse negócio de prova matemática é coisa séria!).

Mas por que falar sobre números tão esdrúxulos? Se a gente pensar q a Natureza é perfeita pq só usa “números redondos”, vamos quebrar a cara. Dizem q a descoberta da existência de números não “perfeitinhos” remonta à época de Pitágoras, e q Hipaso de Metaponto, membro da Escola Pitagórica, teria sido assassinado pq, ao brincar com a raiz quadrada de 2, não encontrou uma fração q definisse tal número. Ao contar sua descoberta a Pitágoras, este não teria gostado nenhum pouco da história e sentenciou Hipaso à morte por afogamento.

Mas a verdade é q os números irracionais estão aí e muitos ao nosso alcance. Quer ver só? Vc já se perguntou por que uma folha de papel A4 possui as medidas q tem? São elas: 297×210 mm. Por q 297mm? Por q não 300mm? Ou 295mm? Experimente dividir 297 por 210. O resultado é uma aproximação de quem? Dela mesma, a raiz quadrada de 2! Os papéis da série “A” (A0, A1, A2,…) seguem uma regra: o maior é duas vezes o tamanho do menor. Tome uma folha A4 e dobre-a ao meio pelo lado de maior dimensão. As folhas resultantes serão duas A5 (dobre o A5 ao meio e vc terá duas folhas A6). E se vc pegar a maior medida e dividir pela menor, vai encontrar um número q se aproxima do irracional raiz quadrada de 2. Essa “proeza” encontrada nos papéis A só é possível porque a relação entre seu comprimento e sua largura é igual à raiz quadrada de 2.

E acho melhor parar por aqui. Essa conversa já deve estar dando nó na cabeça de muita gente. Para descontrair, um cartum. Embora a raiz quadrada de 2 seja apenas uma, permite-me a licença poética multiplicá-la (não ao infinito, é claro).

raiz_quadradade2

 

Números nada redondos